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Abstract. The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative tech-

nique to solve sparse linear systems that are symmetric and positive definite. For systems that axe

ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investi-

gate the effects of various ordering and partitioning strategies on the performance of parallel CG and

ILU(0) preconditioned CG (PCG) using different programming paradigms and architectures. Results

show that for this class of applications: ordering significantly improves overall performance on both

distributed and distributed shared-memory systems, that cache reuse may be more important than

reducing communication, that it is possible to achieve message-passing performance using shared-

memory constructs through careful data ordering and distribution, and that a hybrid MPI÷OpenMP

paradigm increases programming complexity with little performance gains. A multithreaded imple-

mentation of CG on the Cray MTA does not require special ordering or partitioning to obtain high

efficiency and scalability, giving it a distinct advantage for adaptive applications; however, it shows

limited scalabi!ity for PCG due to a lack of thread level par_!elism.
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1. Introduction. The ability of computers to solve hitherto intractable prob-

lems and simulate complex processes using mathematical models makes them an in-

dispensable part of modern science and engineering. Computer simulations of large-

scale realistic applications usually require solving a set of non-linear partial differential

equations (PDEs) over a finite region, subject to certain initial and boundary condi-

tions. Structured grids are the most natural way to discretize such a computational

domain since they are characterized by a uniform connectivity pattern. Their regular

structure is also well-suited for simple ordering techniques. Unfortunately, compli-

cated domains must often be divided into multiple structured grids to be completely

discretized, requiring a great deal of human intervention. Unstructured meshes, by

contrast, can be generated automatically for applications with complex geometries

or those with dynamically moving boundaries, but at the cost of higher memory

requirements to explicitly store the connectivity information for every point in the

mesh. However, because such meshes are irregularly structured, sophisticated order-

ing schemes are required to achieve high performance on leading parallel systems. In

this paper, we examine the relationship between the ordering of unstructured meshes,

and the corresponding parallel performance of the underlying numerical solution.

Using a standard fixed mesh, it may be time-consuming or even impossible for

a simulation to resolve fine-scale features. Efficiency can be significantly improved

by locally refining and coarsening the mesh to capture the phenomena of interest.

Briefly, the existing grid is modified by inserting new points in regions that require

more resolution and removing points from regions where less resolution is acceptable.
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Unstructured grids, by their very nature, facilitate this kind of local dynamic mesh

adaptation to efficiently solve problems with evolving physical features such as shock

waves, vortices, detonations, shear layers, and crack propagation.

The process of obtaining numerical solutions to the governing PDEs requires solv-

ing large sparse linear systems or eigensystems defined over the unstructured meshes

that model the underlying physical objects. The Conjugate Gradient (CG) algorithm

is perhaps the best-known iterative technique to solve sparse linear systems that are

symmetric and positive definite. The CG algorithm is often used with a precondi-

tioner for systems that are ill-conditioned. When using incomplete factorization as a

preconditioner, the sparse matrix vector multiply (SPMV) and the triangular solves
are usually the most expensive operations within each iteration of preconditioned CG

(PCG).

On uniprocessor machines, numerical solutions of such complex, real-life problems

can be extremely time consuming, a fact driving the development of increasingly

powerful multiprocessor supercomputers. The unstructured, dynamic nature of many

systems worth simulating, however, makes their efficient parallel implementation a

daunting task. This is primarily due to the load imbalance created by the dynamically

changing nonuniform grids and the irregular data access patterns [14, 15, 21]. These,

in turn, leave many processors idle and cause significant unbalanced communication
at runtime, thereby adversely affecting the total execution time.

Furthermore, modern computer architectures, based on deep memory hierarchies,

show acceptable performance for irregular computations only if users care about the

proper distribution and placement of their data [2, 13]. Single-processor performance
crucially depends on the exploitation of locality, and parallel performance degrades

significantly if inadequate partitioning of data causes excessive communication and/or

data migration. An intuitive approach would be to use a sophisticated partitioning

algorithm, and then to post-process the resulting partitions with an enumeration

strategy for enhanced locality. Although, in that sense, optimizations for partitioning

and locality may be treated as separate problems, real applications tend to show a
rather intricate interplay of both.

In this paper, we investigate the effects of various ordering and partitioning strate-

gies on the performance of CG and PCG using different programming paradigms and

architectures. In particular, we use the reverse Cuthill-McKee [4] and the self-avoiding

walks [7] ordering strategies, and the METIS [12] graph partitioner. We examine

parallel implementations of CG and PCG using MPI, shared-memory compiler di-
rectives, hybrid programming (MPI+OpenMP), and fine-grained multithreading, on

four state-of-the-art parallel supercomputers: a Cray T3E, an SGI Origin2000, an

IBM SP, and a Cray (formerly Tera) MTA. Results show that for this class of appli-

cations: ordering significantly improves overall performance, that cache reuse may be

more important than reducing communication, that it is possible to achieve message-

passing performance using shared-memory constructs through careful data ordering

and distribution, and that the hybrid paradigm increases programming complexity

with little performance gains. However, the multithreaded implementation of CG

does not require special ordering or partitioning to obtain high efficiency and scala-

bitity, giving it a distinct advantage for adaptive applications even though it shows

limited scalability for PCG due to a lack of thread level parallelism.

The remainder of the paper is organized as follows. In §2, we give a brief overview

of CG and ILU(0) preconditioning. The partitioning and ordering strategies are de-

scribed in §3. In §4, we describe the various parallel machines and the corresponding
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programming paradigms used for our experiments. Detailed performance results are

presented in §5. Finally, §6 concludes the paper with a summary and some observa-
tions.

2. Sparse matrix computations. A discretization of a PDE typically leads

to large sparse matrices, which are commonly defined as matrices that have very few

nonzero entries. Special sparse matrix solution techniques can be used whenever the
zero elements need not be stored. Direct solution methods were traditionally preferred

because of their robustness and predictable nature. However, iterative algorithms are

now becoming quite popular especially for large problems.

The earliest iterative methods used a relaxation technique where the components

of the approximation were systematically modified until convergence. This class con-

sists of Jacobi, Gauss-Seidel, and the Alternating Direction Implicit (ADI) algorithms.

A second group of iterative techniques uses a projection process, which is a canonical
way of extracting an approximate solution from a subspace. The steepest descent

and minimal residual schemes belong to this class. However, other projection-based

iterative techniques that use Krylov subspaces are currently considered to be among

the most important for solving large sparse matrices. The Conjugate Gradient (CG)

algorithm is perhaps the best-known in this class. Although theoretically robust, CG

can suffer from slow convergence for ill-conditioned matrices. It is therefore common

to use a preconditioning technique with CG. In the following subsections, we briefly

describe the preconditioned CG algorithm and the Incomplete LU (ILU) precondi-
tioner.

2.1. Conjugate gradient. The Conjugate Gradient (CG) algorithm is the old-

est and best-known Krylov subspace method used to solve the sparse symmetric pos-

itive definite linear system Ax = b. The method starts from an initial guess Xo of the

vector x. It then successively generates approximate solutions in the Krylov subspace,

and search directions used in updating the approximate solution and residual.

The convergence rate of CG depends on the spectral condition number of the

coefficient matrix A. For ill-conditioned linear systems, it is often necessary to use

a preconditioning technique. In other words, the original system is transformed into
another that has the same solution, but with better spectral properties. For instance,

if matrix M approximates A in some sense, then M-lAx = M-lb would have a
better condition number. The preconditioned CG (PCG) algorithm [19] is outlined

in Fig. 2.1.

For an initial guess x0, compute ro = b - Axo, I9o = zo = M-lro

for j = 0, 1,..., until convergence

aj = (rj, zj)/(Apj,pj)

Xj+l -- xj _-o_jpj

rj+l ----rj -- o_jApj

zj+l = M-%j+I

Zj = (rj+l, zj)
p_+t = z3+1 + _jpj

endfor

FIG. 2.1. The preconditioned Conjugate Gradient algorithm.

Each iteration of PCG involves one sparse matrix-vector product (SPMV) for Apj,

one solve with preconditioner M, three vector updates (AXPY) for Xj+l, rj+l, and
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Pj+t, and three inner products (DOT) for the update scalars c_j and/3j which make
the generated sequences satisfy certain orthogonality conditions. For a symmetric

positive definite linear system, these conditions imply that the distance between the

approximate solution and the true solution is minimized. For most practical matrices,

the SPMV and the triangular solves dominate the other operations when using in-

complete factorization as a preconditioner. This is demonstrated by the results given

in §5. Note that both AXPY and DOT are dense operations and hence insensitive to

mesh orderings.

2.2. ILU preconditioning. A preconditioner is any kind of transformation to

the original sparse linear system which makes it easier to solve. One broad class

of effective preconditioners is based on incomplete factorizations of the matrix A.

That is, the preconditioner M is given in the factored form M = LU, with L and U

being lower and upper triangular matrices. Since some fill elements are suppressed

during the factorization process, M is called an Incomplete LU (ILU) preconditioner.

Solving with M involves two triangular solutions. In this paper, we consider the

simplest form of incomplete factorization, called ILU(0), where all the fill elements
not at the nonzero positions of A are discarded. Compared with the other ILU

variants, ILU(0) is computationally fast and memory efficient. It is quite effective for
a reasonable number of practical matrices. In our implementations, we do not exploit

the symmetry of A.

The ILU(0) method contains two steps. First, an incomplete LU factorization of
A must be created. This factorization is formally done in place and performed only

once, hence its cost is usually negligible compared to the time to solve the system.

Second, the lower and upper triangular solves with L and U must be performed in

each PCG iteration. The triangular solves incur about the same number of operations

as the SPMV Ax, because the sparsity patterns of L and U are identical to the lower

and upper triangular parts of A. However, a parallel triangular solve tends to be
slower than a parallel SPMV, because it has a smaller degree of parallelism. For

SPMV, all the components can be obtained independently in parallel. This is not

true for a triangular solve. Figure 2.2 illustrates the lower triangular solve Lx = b.

The solution of xi depends on all xj, j < i, unless Iij = 0. Thus there are more

task dependencies than SPMV, even if L is very sparse. The task dependency graphs

change with the matrix ordering; hence, different orderings have different degrees of

parallelism. In §5, we evaluate the performance of PCG on several architectures, using

various ordering strategies. Note that the quality of an ILU preconditioner (in terms
of its convergence rate) also has a non-trivial dependence on the ordering; however,

this is outside the scope of our paper.

x=b

for j = l,n

zj = xj/ljj
for each i > j and lij _ 0

xi -= xi - lijxj
endfor

F_G. 2.2. The lower triangular solve.

2.3. Sparse matrix-vector multiplication. The basic sparse matrix-vector

product (SPMV) is one of the most heavily-used kernels in large-scale numerical sim-
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ulations, particularly in iterative solution schemes for sparse linear systems. Suppose

the coefficient matrix A is of order n and has nnz nonzeros. Then, one SP.MV rove!yes

O(nnz) floating-point operations, while AXPY and DOT require only O(n) floating-

point operations. Thus, SPMV dominates the operation count in CG. To perform the

SPMV Ax, we assume that the nonzeros of matrix A are stored in the Compressed

Row Storage (CRS) format [1]. The dense vector x is stored sequentially in memory

with unit stride. Various numberings of the mesh elements/vertices result in different
nonzero patterns of A which, in turn, cause different access patterns for the entries

of x. Moreover, on a distributed-memory machine, they imply different amounts of
communication.

3. Partitioning and linearization. Almost all state-of-the-art computer ar-

chitectures utilize some degree of memory hierarchy (registers, cache, main memory),

thus implying data locality is crucial. With graph partitioning, data locality is en-
forced by minimizing interprocessor communication, but not at the cache level. How-

ever, graph partitioners are indispensable on distributed-memory machLnes, but can

be quite useful even on shared-memory architectures. In this paper, we have used the

METIS [12] multilevel partitioner for our experiments.

Serialization techniques play an important role in enhancing cache performance.

Over the years, special numbering strategies (e.g., Cuthfll-McKee [4], frontal meth-

ods, spectral orderings) have been developed to optimize memory usage and locality

of sparse matrix computations. In addition, the runtime support for decomposing

adaptive structured grids is often based on a linear representation of the grid hier-

archy in the form of a space-filling curve (SFC). SFCs have been demonstrated to
be an elegant and unified linearization approach for certain problems in N-body and

finite element method (FEM) simulations, mesh partitioning, and other graph-related

areas [6, 16, 17, 18, 20]. For our experiments, we pursued both these strategies with
some modifications as described below.

3.1. METIS graph partitioning. Some excellent parallel graph partitioning

algorithms have been developed and implemented in the last decade that are extremely

fast while giving good load balance quality and low edge cuts. Perhaps the most popu-

lar is METIS [12] which belongs to the class of multilevel partitioners. METIS reduces

the size of the graph by collapsing vertices and edges using a heavy edge matching

scheme, applies a greedy graph growing algorithm for partitioning the coarsest graph,
and then uncoarsens it back using a combination of boundary greedy and Kernighan-

Lin refinement to construct a partitioning for the original graph. Partitioners strive

to balance the computational workload among processors while reducing interproces-

sor communication. Improving cache performance is not a typical objective of most

partitioning algorithms.

3.2. RCM ordering. The particular enumeration of the vertices in an FEM

discretization controls, to a large extent, the sparsity pattern of the resulting stiffness

matrix. The bandwidth, or profile, of the matrix can have a significant impact on

the efficiency of linear systems and eigensolvers 1. Cuthill and McKee [4] suggested

a simple algorithm, called CM, based on ideas from graph theory. Starting from

a pseudoperipheral vertex, levels of increasing distance from that vertex are first

1Sparse direct solvers nowadays usually use minimum degree or nested dissection orderings, which
result in much larger bandwidth. However, they preserve sparsity (reduce fill-ins) much better, and
run faster. So although the bandwidth does not impact the efficiency of all linear solvers, it does
impact the efficiency of CG/PCG iterative solvers that we are examining in this paper.
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constructed. The enumeration is then performed level-by-level with increasing vertex

degree (within each level). Several variations of this method have been suggested,
the most popular being reverse Cuthill-McKee (RCM) [5] where the CM ordering is

reversed. In many cases, it has been shown that RCM improves the profile of the

resulting matrix. The class of CM algorithms are fairly straightforward to implement

and largely benefit by operating on a pure graph structure, i.e., the underlying graph is

not necessarily derived from a triangular mesh. It is worth noting that RCM (or CM)

has been observed empirically to be an ordering which is usually good for convergence
of ILU.

3.3. SAW ordering. The general idea of a space-filling curve (SFC) is to lin-

earize points/elements in a higher-dimensional space. This mapping onto a one-
dimensional structure is exploited in two ways: First, the locality preserving nature

of the construction fits elegantly into a given memory hierarchy; and second, the par-

titioning of a contiguous linear object is trivial. For unstructured meshes, an SFC
introduces an artificial structure in that the construction depends on the embedding,

thereby ignoring the combinatorial structure of the mesh which drives the formula-

tion of operators between finite element spaces. To overcome this drawback, a novel

approach, called a self-avoiding walk (SAW) [7], has recently been proposed. SAW

uses a mesh-based (as opposed to geometry-based) technique with similar application
areas as SFCs.

A SAW over a triangular mesh is an enumeration of all the triangles such that

two consecutive triangles (in the SAW) share an edge or a vertex, i.e., there are no

jumps in the SAW. In other words, a SAW visits each triangle exactly once, entering it

over an edge or a vertex, and exiting over another edge or vertex. When a SAW goes

over vertices, it indicates that the triangles following one another in the enumeration

do not share an edge. It is important to note that a SAW is not a Hamiltonian
path; however, Hamiltonicity of the dual graph implies the existence of a SAW that

goes only over edges [7]. Figure 3.1 shows an example of a SAW over a 36-element

triangular mesh.

Fro. 3.1. An example of a self-avoiding walk (SAW) over a 36-element triangular mesh.

It has been shown that there is an algorithm for SAW construction whose com-

plexity is linear in the number of triangles in the mesh [7]. Furthermore, SAWs are
amenable to hierarchical coarsening and refinement, i.e., they have to be rebuilt only

in regions where mesh adaptation occurs, and can therefore be easily parallelized.
SAW, unlike RCM, is not a technique designed specifically for vertex enumeration;

thus, it cannot operate on the bare graph structure of a triangular mesh. This implies

a higher construction cost for SAWs, but several different vertex enumerations can be

derived from a given SAW.
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4. Programming paradigms. Recently, four different parallel architectures

have emerged, each with its ow___set of programming pa_radio_o-m_.s.This work investi-

gates the performance and the programming effort for the Conjugate Gradient (CG)

iterative solver for sparse matrices on each of these architectural platforms using their

corresponding programming approaches: message passing, shared-memory directives,

hybrid programming, and multithreading. We give below a brief description of these

parallel machines and their programming paradigms.

4.1. Message passing. Parallel programming with message passing is the most

common and mature approach for high-performance parallel systems. On distributed-

memory architectures, each processor has its own local memory that only it can

directly access. To access the memory of another processor, a copy of the desired

data must be explicitly sent across the network using a message-passing library such

as MPI. To run a code on such machines, the programmer must decide how the data

should be distributed among the local memories, communicated between processors

during the course of the computation, and reshuffled when necessary. This model

causes increased code complexity, especially for irregularly structured applications;

however, the benefits lie in enhanced performance for coarse-grained communication

and implicit synchronization through blocking communication.

The message-passing experiments in this paper were performed on the distributed-

memory architecture of the 640-node Cray T3E, located in the NERSC division of

Lawrence Berkeley National Laboratory. Each T3E node consists of a 450 MHz DEC

Alpha processor (900 Mflops peak theoretical floating-point speed), 256 MB of main

memory, a 96 KB secondary cache, and is interconnected to other nodes through a
three-dimensional torus.

4.2. Shared memory. Using a shared-memory system can greatly simplify the

programming task compared to message-passing implementations. In distributed

shared-memory architectures, each processor has a local memory but also has direct
access to all the memory in the system. Parallel programs are relatively easy to im-

plement since each processor has a global view of the entire memory. Parallelism can

be achieved by inserting compiler directives into the code to distribute loop iterations

among the processors. However, portability may be diminished, and performance may

suffer from poor spatial locality of physically distributed shared data.

The shared-memory codes presented here were implemented on the 64-node SGI
Origin2000, located in the NAS division of NASA Ames Research Center. Each node

of the Origin2000 is a symmetric multiprocessor (SMP) containing two 250 MHz MIPS

R10000 processors and 512 MB of local memory. The hardware makes all memory

equally accessible from a software standpoint, by sending memory requests through

routers located on the nodes. Access time to memory is nonuniform, depending on

how far away the memory lies from the processor. The topology of the interconnec-

tion network is a hypercube, bounding the maximum number of memory hops to a

logarithmic function of the number of processors. Each processor also has a relatively

large 4 MB secondary cache, where only it can fetch and store data. If a processor

refers to data that is not in cache, there is a delay while a copy of the data is fetched

from memory. When a processor modifies a word of data, all other copies of the cache

line containing that word are invalidated.

OpenMP is the emerging industry standard for shared memory programming.

The parallelism is mostly expressed by loop-level compiler directives. The syntax is

similar to many vendors' native pragma directives, such as SGI's IRIX threads we used

in this study. Alternatively, we could use the lower level POSIX thread (pthreads)
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libraryforsharedmemoryparallelism2.Thiswouldgiveusmorecontroloverthreads,
andreducethethreadcreationtimesassociatedwithdifferentOpenMP-enabledloops
withinasingleCGiteration.However,apthreadsimplementationwouldincreasecode
complexitysignificantly.

4.3. Hybrid programming. The latest technological advances have allowed

increasing numbers of processors to have access to a single memory space in a cost

effective manner. As a result, the latest teraflop-scale parallel architectures contain

a large number of networked SMPs. Pure MPI codes should port easily to these sys-
tems, since message passing is required among the SMP nodes. However, it is not

obvious that message passing within each SMP is the most effective use of the sys-

tem. A recently proposed programming paradigm combines two layers of parallelism,

by implementing OpenMP shared-memory codes within each SMP, while using MPI

among the SMP nodes. This mixed programming strategy allows codes to potentially

benefit from loop-level parallelism in addition to coarse-grained domain-level paral-

lelism. Although the hybrid programming methodology may be the best mapping to

the underlying architecture, it remains unclear whether the performance gains of this

approach compensate for the increased programming complexity and the potential

loss of portability.

Figure 4.1 shows a schematic of this hybrid programming paradigm. Two MPI

tasks (taskl and task2) are initiated on processors Pl and P2 of a node that contains

a total of eight processors. Each MPI task then spawns/forks four OpenMP threads,
where each individual thread is assigned to a processor. For example, task1 spawns

thread_2 which is assigned to processor P3- Note that multiple threads can be run

on one processor; however, this did not occur for the experiments reported in this

paper. Threads spawned by the same task communicate implicitly through shared

memory using OpenMP constructs. But threads that were spawned by different tasks

communicate explicitly using MPI.

FIG. 4.1. A schematic of hybrid programming where an SMP node containing eight processors
runs two MPI tasks and four OpenMP threads per task.

The hybrid architecture used in our experiments is the IBM SP system, recently
installed at the San Diego Supercomputing Center (SDSC). The machine contains

1,152 processors arranged as 144 SMP compute nodes. Each node is equipped with
4 GB of memory shared among its eight 222 MHz Power3 processors, and connected

via a crossbar. The crossbar technology reduces bandwidth contention to main mem-

ory, compared to traditional shared-bus designs. Each Power3 CPU has an L1 (64 KB)
cache which is 128-way set associative, and L2 (4 MB) cache which is four-way set

associative with its own private cache bus. All the nodes are connected to each other

via a switch interconnect using an omega-type topology. Currently, only four MPI

tasks (out of the eight processors) are available within each SMP when using this

2In fact, on many systems, OpenMP is implemented based on pthreads.
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fastswitch.Thus,underthecurrentconfiguration,theuserisrequiredto implement
mixedmodeprogramsto utilizeall theprocessors.Thenextgenerationswitchwill
alleviatethisproblem.

Hybridprogrammingmayofferanadvantagein systemswheretheMPI library
isunoptimizeddueto softwareissues(suchasa poorlyimplementedcommunication
layerwithinanSMP)or hardwarelimitations(suchasthecurrentconfigurationof
the SP'sswitchat SDSC).Hybridcodesmayalsobenefitapplicationswhichare
well-suitedto takeadvantageofshared-memoryalgorithms.

4.4. MTA multithreadlng. Multithreadinghasreceivedconsiderableatten-
tionovertheyearsasa promisingwayto hidememorylatencyin high-performance
computers,whileprovidingaccessto a largeanduniformsharedmemory.Using
multithreadingto buildcommercialparallelcomputersisa newconceptin contrast
to thestandardsingle-threadedmicroprocessorsof traditionalsupercomputers.Such
machinescanpotentiallyutilizesubstantiallymoreof theirprocessingpowerbytoler-
atingmemorylatencyandusinglow-levelsynchronizationdirectives.Cray(formerly
Tern)hasdesignedandbuilt a state-of-the-artmultithreadedsupercomputercalled
theMTA,whichisespeciallywell-suitedforirregularanddynamicapplications.Par-
allelprogrammabilityis considerablysimplifiedsincetheuserhasaglobalviewof
thememory,andneednot beconcernedwith thedatalayout.However,portability
is clearlycompromisedastheMTA is currentlytheonly architecturethat directly
supportsthisprogrammingparadigm.

TheMTAwasinstalledat SDSCin 1998.It hasa radicallydifferentarchitec-
turethancurrenthigh-performancecomputersystems.Each255MHzprocessorhas
supportfor 128hardwarestreams,whereeverystreamincludesa programcounter
anda setof 32registers.Oneprogramthreadcanbeassignedto eachstream.The
processorswitcheswithnooverheadamongtheactivestreamsat everyclocktickeven
if a threadisnot blocked,whileexecutinga pipelinedinstruction.

TheuniformsharedmemoryoftheMTAisfiat,andphysicallydistributedacross
hundredsofbanksthat areconnectedthroughathree-dimensionaltoroidalnetworkto
theprocessors.All memoryaddressesarehashedbythehardwaresothat apparently
adjacentwordsareactuallydistributedacrossdifferentmemorybanks.Becauseofthe
hashingscheme,it is impossiblefortheprogrammerto controldataplacement.This
enhancesprogrammabilitycomparedtostandardcache-basedmultiprocessorsystems.
Ratherthanusingdatacachestohidelatency,theMTAprocessorsusemultithreading
to toleratelatency.If a threadiswaitingfor its memoryreferenceto complete,the
processorexecutesinstructionsfromotherthreads.Performancethusdependson
havingalargenumberofconcurrentcomputationthreads.

Lightweightsynchronizationamongthethreadsisprovidedbythememoryitself.
Eachwordof physicalmemorycontainsa full-emptybit, whichenablesfast syn-
chronizationvia loadandstoreinstructionswithoutoperatingsystemintervention.
Synchronizationamongthreadsmaystalloneofthethreads,butnot theprocessoron
whichthethreadsarerunning,sinceeachprocessormayrunmanythreads.Explicit
loadbalancingacrossloopsisalsonotrequiredsincethedynamicschedulingof work
to threadsprovidestheabilityof keepingtheprocessorssaturated,evenif different
iterationsrequirevaryingamountsof timeto complete.Oncea codehasbeenwrit-
tenin themultithreadedmodel,noadditionalworkis requiredto runit onmultiple
processors,sincethereisnodifferencebetweenuni-andmultiprocessorparallelism.

5. Experimental results. Ourexperimentaltestmeshconsistsofatwo-dimen-
sionalDelaunaytriangulation,generatedbytheTriangle[22]softwarepackage.The
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meshisshapedliketheletter"A", andcontains661,054verticesand1,313,099trian-
gles.Theunderlyingmatrixisassembledbyassigningarandomvaluein (0,1)toeach
(i,j) entrycorrespondingto thevertexpair (vi,vi), where1< distance(v{,vi) <_ 3.

The distance between two vertices is defined to be the number of edges on the shortest

path between them. All other off-diagonal entries were set to zero. This simulates a lo-
cal discrete operator where each vertex needs to communicate with its neighbors that

are no more than three edge lengths away. The matrix is symmetric with its diagonal
entries set to 40, which makes it diagonally dominant (and hence positive definite).

This ensures that the CG algorithm converges successfully. The final sparse matrix A

has approximately 39 entries per row and a total of 25,753,034 nonzeros. This sparsity
is representative of matrices obtained from discretizing PDEs on three-dimensional

meshes; however, the connectivity pattern will be different for three-dimensional prob-

lems. The CG algorithm converges in exactly 13 iterations (tolerance set to 10-15),

with the unit vector as the right-hand side b and the zero vector as the initial guess

for x. For our test matrix, the SPMV computation accounts for approximately 87%

of the total number of floating-point operations within each CG iteration.

For the PCG experiments, the diagonal entries of the matrix were reduced to 10,

thus no longer making it diagonally dominant and causing the original CG to fail.

However, the ILU(0) PCG algorithm successfully converged in exactly 18 iterations
(tolerance again set to 10-15), given the modified matrix.

5.1. Message passing implementation. In our experiments on the Cray T3E,
we use the parallel SPMV and CG routines in Aztec [9], implemented using MPI.

The matrix A is partitioned into blocks of rows, with each block assigned to one

processor. The associated components of vectors x and b are distributed accordingly.

Communication may be needed to transfer some components of x. For example, in

y +-- Ax, if Yi is updated on processor Pl, A_j # 0, and xj is owned by processor

P2, then P2 must send xj to Pl. In general, a processor may need more than one
x-component from another processor. It is thus more efficient to combine several x-

components into one message so that each processor sends no more than one message

to another processor. This type of optimization can be performed in a pre-processing

phase. The other two operations, AXPY and DOT in the CG algorithm, are easily

parallelized: AXPY requires only local computations, whereas DOT requires a local

sum followed by a global sum reduction.

Three routines within Aztec are of particular interest to us: AZ_transform,
which initializes the data structures and the communication schedule for SPMV,

AZ_matvec_mult, which performs the matrix-vector multiply, and AZ_cg, which solves

a linear system using the CG algorithm. In Table 5.1, we report the runtimes of the

AZmatvec_mult and AZ_cg routines on the T3E at NERSC. It was not possible to

run our test problem on less than eight processors of this machine due to memory
constraints.

TABLE 5.1

Runtimes (in seconds) of AZ_matvec-mulZ (SPMV) and AZ_cg (CG) using different strategies

on the T3E.

ORIG METIS RCM SAW

P SPMV CG SPMV CG SPMV CG SPMV CG

8 0.562 8.652 0.476 7.662 0.381 6.185 0.171 2.916

16 0.325 5.093 0.268 2.909 0.193 3.198 0.086 1.491

32 0.199 3,167 0.087 1.468 0.095 1.662 0.044 0.795

64 0.119 1.929 0.056 0.961 0.045 0.882 0.028 0.462
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Results show that for the key kernel routine AZ_matvec.mult, SAW is always

about twice as fast as RCM. In turn, RCM is about 1.5 times faster than METIS on

16 or fewer processors, and about the same on 32 or more processors. Note that when

using 32 or more processors, METIS is twice as fast as OPJG (the natural ordering

from Triangle). For AZ_cg, SAW is again about twice as fast as RCM. However, we

do not see a clear advantage of RCM over METIS for this routine. Both RCM and

METIS are twice as fast as ORIG on large number of processors. Finally, METIS,

RCM, and SAW, all demonstrate excellent scalability (more than 75% efficiency) up to

the 64 processors that were used for these experiments, but ORIG seems less scalable

(only about 56% efficiency). As expected, there is a strong correlation between the

performance of CG and the underlying SPMV for all test cases.

Table 5.2 shows the pre-processing times spent in AZ_transform. The times for

METIS, RCM, and SAW are comparable, and are usually an order of magnitude
larger than the corresponding times for AZ_matvec_mult. The AZ_transform times

also show some scalability up to 32 processors. However, for ORIG, the times are two

to three orders larger, and show very little scalability. Clearly, the OR/G ordering is

too inefficient and unacceptable on distributed-memory machines.

TABLE 5.2

Runtimes (in seconds) o/AZ_transform (initialization) on the T3E.

P ORIG METIS RCM SAW

8 504.2 2.829 2.370 2.023

16 547.9 1.455 1.330 1.157

32 333.7 0.840 0.864 0.804

64 150.0 0.422 0.776 0.537

The message-passing PCG experiments in this paper use the BlockSolve95 [11]

software library, which is used for solving large, sparse linear systems on parallel plat-

forms that support message-passing with MPI. Although Aztec is a powerful iterative

library, it does not provide a global ILU(0) factorization routine. BlockSolve95 uses

two matrix reordering schemes to achieve scalable performance. First, the graph is

reduced by extracting cliques and identical nodes (i-nodes) in the sparse matrkx struc-
ture, allowing for the use of higher-level BLAS. Next, the reduced graph is colored

using an efficient parallel coloring heuristic [10]. Finally, vertices of the same color
are grouped and ordered sequentially. As a result, during the triangular solves of the

PCG, the unknowns corresponding to these vertices can be solved for in parallel, after

the updates from previous color groups have been performed. The number of colors

therefore determines the number of parallel steps in the triangular solve. Since Block-

Solve95 reorders the input matrix, we investigate what effect, if any, our ordering

strategies have on the parallel performance of PCG.

We could not port BlockSolve95 to the T3E because of the large number of MPI

tags it requires; hence, our message passing PCG experiments were conducted on the

IBM SP machine. Table 5.3 presents the runtimes of the BlockSolve95 triangular solve

(BStri_solve) and the total PCG (BSpar_solve) routines using various partitioning

and ordering strategies. Results clearly show that the initial ordering of the matrix

plays a significant role in PCG performance, even though the input matrix is further

reordered by the BlockSolve95 library. Notice that BStri_solve is responsible for

the majority of PCG's computational overhead, and is also sensitive to the initial

ordering. A comparison of the BSpar_solve times show that RCM and SAW have an

advantage over METIS; however, all three schemes are about an order of magnitude
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TABLE 5.3

Runtimes (in seconds) of BStri_solve (triangular solve) and BSpar_solve (PCG) on the SP.

ORIG METIS

P TriSolve PCG TriSolve PCG

8 26.38 96.41 16.95 22.44
16 16.27 64.23 6.81 9.67

32 8.95 14.75 4.30 5.97
64 10.93 15.11 2.63 3.67

KCM SAW

1MSolve PCG THSolve PCG

10.28 14.63 8,17 11,60
5.10 7.44 4.70 7,29

2.59 4,14 2.35 3.88
1.35 2.36 1.70 2.46

faster than ORIG.

Timings for the BlockSolve95 graph coloring (BSmain_perm) and ILU(0) matrix
factorization (BSfactor) routines are presented in Table 5.4. The initial ordering of
the matrix dramatically affects both these pre-processing steps, with SAW producing
the best results. Notice from Tables 5.3 and 5.4 that the BlockSolve95 library shows

scalable performance across all aspects of the PCG computation when intelligent

partitioning and ordering schemes are used.

TABLE 5.4

Runtirnes (in seconds) for BSmain_perm (graph coloring) and BSfactor (matrix factorization)
on the SP.

ORIG METIS RCM

P Color Factorize Color Factorize Color Factorize

8 116.68 339.94 48.41 107.20 37.87 82.53

16 75.63 283.71 20.00 46.90 19.01 40.02
32 46.96 128.30 10.01 23.26 9.59 20,19
64 28.08 82.63 5.01 11.41 5.39 10.48

SAW

Color Factorize

33.93 75.31
17.05 37.22

8.76 19.79
4.64 9,57

To better understand the various partitioning and ordering algorithms, we have

built a simple performance model to predict the parallel runtime of AZ_matvec_mult.
First, using the T3E's hardware performance monitor, we collected the average num-
ber of cache misses per processor. This is reported in Table 5.5, and shows that SAW
has the fewest number of cache misses. In comparison, RCM, METIS, and ORIG
have between two and three times that number. Second, we gathered statistics on the

average communication volume and the maximum number of messages per processor,
both of which are also shown in Table 5.5. Notice that METIS transfers the least

amount of data, whereas RCM has the fewest number of messages.

TABLE 5.5

Locality and communication statistics for AZ_matvec_mult (SPMV) on the TgE.

Avg. Cache Misses (xl06)

P ORIG METIS RCM SAW

8 3.684 3,034 3.749 2.004 3,228 (7) 0.011 (3)
16 2,007 1,330 1.905 0.971 2.364 (15) 0,011 (4)
32 1.060 0.658 1.017 0,507 1.492 (31) 0,009 (5)

64 0.601 0.358 0.515 0,290 0,828 (63) 0.008 (6)

Avg. Comm. VoI. (in Mbytes) (Max. # Msgs)

ORIG METIS RCM SAW

0.031 (2)
0.032 (2)
0.032 (2)
0.032 (2)

0.049 (6)
0.036 (9)
0.030(11)
0.023(16)

In our model, we estimate the total parallel runtime T as

T=TI+Tr_+Tc,

where, Tf, T,_, and Tc are the estimated per-processor times to perform floating-point
operations, to service the cache misses, and to communicate the x vector. Given
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that a floating-point operation requires 1/900 microseconds and that each cache miss

latency is 0.08 microseconds (both from T3E product documentation), and assuming

that the MPI bandwidth and latency are 50 MB/second and 10 microseconds (both
from measurement), respectively, we can estimate the total runtime based on the
information in Table 5.5.

Table 5.6 shows the predicted total time T and the ratio Tm/T. Tf is com-

paratively negligible (consistently less than 5% of T) for all ordering strategies and

processor sets. Tc is 18-27% of T for ORIG, but less than 3% of T for METIS, RCM,

and SAW. In parenthesis, we also give the percentage deviation of T from the mea-

sured experimental runtime (that are reported in Table 5.1). The maximum deviation

from the measured runtimes is -58%, which gives us some degree of confidence in our

model. The results in Table 5.6 clearly indicate that servicing the cache misses is ex-
tremely expensive and requires more than 93% of the total time for METIS, RCM, and

SAW, and 72-80% for ORIG (which has relatively more communication). Although

SAW and RCM both incur more communication than METIS (in terms of the aver-

age message volume as shown in Table 5.5), their total runtimes are significantly less.

This illustrates that for our combination of applications and architectures, improving

cache reuse can be more important than reducing interprocessor communication.

TABLE 5.6
Predicted runtimes (in seconds) for AZ_maZvec_mulZ(SPMV) on the T3E. The fraction of the

total time spent servicing cache misses is also shown. In the column of total time T, the percentage
deviation from the measured time is given in parenthesis.

ORIG METIS RCM SAW

P T (dev.) _ T (dev.) _ T (dev.) _ T (dev.) -_
8 0.367 (-35%) 0.80 0.250 (-47%) 0.97 0.308 (-19%) 0.97 0.169 (-1%) 0.95

16 0.212 (-35%) 0.76 0.110 (-58%) 0.96 0.157 (-19%) 0.97 0.082 (-5%) 0.94
32 0.117 (-41%) 0.72 0.055 (-37%) 0.96 0.084 (-12%) 0.97 0.043 (-2%) 0.94
64 0.067 (-44%) 0.72 0.030 (-46%) 0.96 0.043 (-5%) 0.96 0.025 (-12%) 0.93

5.2. Shared memory implementation. This version of the parallel CG code

was written using SGI's native pragma directives, which create IRIX threads. A

rewrite to OpenMP would require minimal programming effort but has not been done

at this time. Each processor is assigned an equal number of rows in the matrix. The

parallel SPMV and AXPY routines do not require explicit synchronizations, since

they do not contain concurrent writes. Global reduction operations are required for

DOT and the convergence tests. Two basic implementation approaches described
below were taken.

The FLATMEM strategy naively assumes that the Origin2000 is a flat shared-

memory machine. Arrays are not explicitly distributed among the processors, and

non-local data requests are handled by the cache coherent hardware. Alternatively,

the CC-NUMA strategy addresses the underlying distributed-memory nature of the

machine by performing an initial data distribution. Sections of the sparse matrix are

appropriately mapped onto the memories of their corresponding processors using the

default "first touch" data distribution policy of the Origin2000. The computational

kernels of both the FLATMEM and CC-NUMA implementations are identical, and

simpler to implement than the MPI version. Table 5.7 shows the SPMV and CG

runtimes using both approaches with the ORIG, RCM, and SAW orderings of the

mesh. We also present CG runtimes using an MPI implementation on the Origin2000

with the SAW ordering, as a basis for comparison.
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TABLE 5.7

Runtirnes (in seconds) of CG for different orderings running in FLATMEM and CC-NUMA

modes on the Origin2000. The CG runtimes for an MPI implementation on the Origin2000 with

the SAW ordering is also given for comparison.

FLATMEM CC-NUMA MPI

P ORIG RCM SAW ORIG IICM SAW SAW

1 46.911 37.183 36.791 46.911 37.183 36.791

2 28.055 21.867 21.772 27.053 21.454 21.229 23.145

4 30.637 25.350 24.751 17.608 10.651 10.593 7.880

8 16.836 14.431 14.121 9.824 5.575 5.516 3.815

16 16.348 15.516 15.548 6.205 2.845 2.872 1.926

32 16.653 15.350 15.423 3.584 1.548 1.514 1.075

64 10.809 7.782 8.450 2.365 0.885 0.848 0.905

Observe that the CC-NUMA implementation shows significant performance gains

over FLATMEM. This is expected since the Origin2000 is a distributed-memory sys-

tem, and therefore should be treated as such. As the number of processors increases,
the runtime difference between the two approaches becomes more dramatic, achiev-

ing an order of magnitude improvement when using more than 16 processors. Proper
data distribution becomes increasingly important for larger numbers of processors

since the corresponding communication overhead grows nonuniformly. Within the

CC-NUMA approach, the RCM and SAW ordering schemes dramatically reduce the

runtimes compared to OR/G, indicating that an intelligent ordering algorithm is nec-

essary to achieve good performance and scalability on distributed shared-memory

systems. There is little difference in parallel performance between RCM and SAW

because both ordering techniques reduce the number of secondary cache misses and
the non-local memory references of the processors. Recall however that on the T3E,

SAW was about twice as fast as RCM. This discrepancy in performance is probably

due to the larger cache size of the Origin2000 that reduces the individual effects of

the two ordering strategies.

The last two columns of Table 5.7 compare the CC-NUMA and MPI implementa-

tions of CG on the Origin2000 using the SAW ordering. Notice that the runtimes are

very similar, even though the programming methodologies of these two approaches

are quite different. These results indicate that for this class of applications, it is possi-

ble to achieve message passing performance using shared-memory constructs, through
careful data ordering and distribution.

A shared-memory version of PCG is currently unavailable, and is not considered

in this paper. An efficient implementation would require a CC-NUMA approach with

similar algorithmic designs to those used in the BlockSolve95 library, including graph

dependency analysis and matrix reordering. As we have shown in this section and

in previous work [15, 21], a simplified FLATMEM strategy produces poor results for
irregularly structured problems, and would not be suitable for PCG.

5.3. Hybrid implementation. For the hybrid implementation of the CG al-

gorithm on the IBM SP, we started with the Aztec MPI library [9] and incremen-

tally added OpenMP parallelization directives. Through the use of profiling, the key

loop nests responsible for significant portions of the overall execution were identified.

A naive parallelization of all loops can be counterproductive since the overhead of

OpenMP can exceed the savings in execution time. Some reorganization of the code,

including the use of temporary variables, was necessary to preserve correctness. In

all, eight Aztec loops were parallelized with OpenMP directives, the most important
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being the SPMV routine. To achieve the best possible OpenMP performance, dense

vector operations were performed with the threaded vendor-optimized BLAS from

IBM's Engineering Scientific Subroutine Library (ESSL).

Table 5.8 shows the results of the hybrid CG implementation on the SP, for varying

numbers of SMP nodes, MPI tasks, and OpenMP threads. In addition to the ORIG,

METIS, RCM, and SAW orderings, we present a new hybrid partitioning/linearization

scheme comprised of METIS+SAW. Since METIS [12] is well-suited for minimizing

interprocessor communication and SAW [7] has been demonstrated to enhance cache

locality, combining these two approaches is a potentially promising strategy for hybrid

architectures. First, the graph is partitioned into the appropriate number of MPI tasks

using METIS. Next, a SAW linearization is applied to each individual subdomain in

parallel. Thus, when multiple OpenMP threads process their assigned submatrix, the

SAW reordering should improve each processor's cache performance and reduce false

sharing.

TABLE 5.8

Runtimes (in seconds) o/ CG using different orderings on the SP.

P Nodes Tasks Threads I ORIG METIS RCM [ SAW METIS+SAW
4 1 1 4 6.470 3.561 [ 3.244

1 2 2 6.848 4.968 3.294 3.017 2.990
1 4 1 7.262 3.994 3.192 2.919 2.905

2 1 2 6.928 4.804 3.255 2.962 2.921
2 2 1 7.656 3.881 3.136 2.829 2.805

4 1 1 7.278 3.871 3.108 2.803 2.772
8 1 1 8 4.388 2.162 1.998

1 2 4 4.995 2.929 1.992 1.879 1.841
1 4 2 6.038 2.426 1.930 1.812 1.781
2 1 4 4.858 2.768 1.858 1.716 1.675

2 2 2 5.955 2.234 1.759 1.620 1.589
2 4 1 6.141 1.891 1.758 1.595 1.575

4 1 2 5.301 2.123 1.733 1.568 1.530

4 2 1 6.044 1.806 1.687 1.506 1.494
8 1 1 5.550 1.774 1.687 1.511 1.453

16 2 1 8 3.375 1.926 1.217 1.139 1.118

2 2 4 4.125 1.366 1.071 1.018 0.992
2 4 2 4.782 1.472 1.084 1.019 1.006
4 1 4 3.684 1.261 0.987 0.925 0.897

4 2 2 4.527 1.078 0.985 0.894 0.884
4 4 1 5.186 0.965 0.986 0.914 0.902
8 1 2 4.153 1.057 0.960 0.892 0.847

8 2 1 4.539 0.905 0.926 0.842 0.828

32 4 1 8 2.973 0.870 0.651 0.678 0.617
4 2 4 3.608 0.709 0.618 0.593 0.581

4 4 2 4.067 0.723 1.120 0.680 0.649
8 1 4 3.325 0.628 0.590 0.529 0.506

8 2 2 3.801 0.587 0.592 0.560 0.545
8 4 1 4.267 0.586 0.607 0.580 0.569

64 8 1 8 2.992 0.473 0.391 0.390 0.372
8 2 4 3.557 0.452 0.690 0.442 0.407

8 4 2 3.963 0.466 0.798 0.495 0.460

Notice that when there is only one SMP node and one MPI task (as in {1,1,4}

and {1,1,8}) 3, the CG code is effectively parallelized using only OpenMP; thus, tim-

ings are not presented for the corresponding METIS and METIS+SAW entries. The

3The tuple {x,y, z} denotes {SMP nodes, MPI tasks, OpenMP threads}.
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performance trends are very similar to the CC-NUMA results in §5.2 where the SAW

ordering gave the best runtimes. Similarly, when the number of OpenMP threads is
one, the parallelization is purely MPI based. Recall from §4.3 that due to limitations
in the current switch architecture of the SDSC's SP, the maximum number of MPI

tasks is limited to four on each SMP, and hybrid programming is required to use all

the available processors.

The performance of the ordering schemes averaged across all combinations of

nodes, tasks, and threads from best to worst are: METIS+SAW, SAW, RCM, METIS,

and ORIG. The METIS+SAW strategy consistently outperforms all others; however

as was shown in §5.1, cache behavior is significantly more important than interproces-

sot communication for our application. As a result, there is no significant performance

difference between the hybrid METIS+SAW strategy and the pure SAW hnearization.

Nonetheless, we expect algorithms with higher communication requirements to bene-

fit from this dual partitioning/ordering approach. This will be the subject of future

research. Overall, these results show that intelligent ordering schemes are extremely

important for efficient sparse matrix computations regardless of whether the program-

mint paradigm is OpenMP, MPI, or a combination of both.

To compare hybrid versus pure MPI performance, first examine the METIS+SAW

column since it gives the best CG runtimes. Each processor set shows differing results.

For example, on 16 processors, the fastest CG implementation is for {8,2,1}, meaning

no OpenMP parallelization is triggered. However, on 32 processors, {8,1,4} is the

fastest, outperforming {8,4,1}. Finally, on 64 processors, using the maximum number

of OpenMP threads, as in {8,1,8}, gives the best results. Within each processor set,
varying the number of tasks and threads does not result in a significant performance

difference. Overall, the hybrid implementation offers no noticeable advantage. This

is true for the other ordering schemes as well, as is evident from Table 5.8. However,

since the hybrid paradigm increases programming complexity and adversely affects
portability, we conclude that for running iterative sparse solvers on clusters of SMPs,

a pure MPI implementation is a more effective strategy. Similar conclusions have

been drawn in recent work by other researchers [3, 8].

For the same reasons as mentioned in §5.2, a hybrid PCG implementation is not

considered in this paper, and will be the subject of future work.

The results in §5.1, 5.2, and here, show that if the underlying computation un-

dergoes dynamic mesh adaptation, a new reordering would be required each time the
mesh evolved for efficient parallel performance. In addition, once an ordering was

computed for the newly-adapted mesh, a remapping phase would be necessary to
appropriately redistribute the corresponding submatrix onto the processors. These

processes preserve the computational load balance and maintain good cache locality

for adaptive applications. Unfortunately, a significant overhead is generally associated

with these rebalancing phases [14, 15, 21]. The CC-NUMA and MPI+OpenMP strate-

gies would thus be comparable to an MPI implementation, requiring similar amounts
of programming effort and rebalancing overheads. The major difference would be the

use of a shared address space (global on an Origin2000, local within an SMP node of

an SP) instead of explicit message-passing calls for interprocessor communication.

5.4. MTA multithreaded implementation. The multithreaded implementa-

tion of CG on the Cray MTA is straightforward, requiring only compiler directives.

Since the data structures are dynamically allocated pointers, special pragma asser-

tions were used to indicate that there are no loop-carried dependencies. The compiler

was thus able to automatically parallelize the appropriate loop segments. Load bal-
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ancingis implicitlyhandledbytheoperatingsystemwhichdynamicallyassignsrows
to threads.Thereductionoperationsfor DOTandtheconvergencetestwerehan-
dledautomaticallyaswell. Otherwise,specialsynchronizationconstructswerenot
requiredsincetherearenootherpossibleraceconditionsin themultithreadedCG.

It is important to highlight that no special ordering was necessary to achieve good

parallel performance.

Results using 60 streams per processor are presented in Table 5.9. Both CG

and the underlying SPMV achieve high efficiency of over 9070 using the ORIG or-

dering. This indicates that there is enough thread and instruction level parallelism

in CG to tolerate the relatively high overhead of memory access. There is a slight

drop in performance between four and eight processors. As we increase the num-

ber of processors, the number of active threads increases proportionately while the

runtimes become very small. As a result, a greater percentage of the overall time

is spent on thread management, causing a decrease in efficiency. Notice that the

SAW ordering does not significantly change the performance of CG on this cache-less

architecture. Thus, the programming and runtime overheads associated with parti-

tioning/linearization schemes are absent on this platform. Furthermore, reordering

and remapping are not required even if the underlying mesh undergoes adaptation.

This saves both the computational resources and the programming overhead of rebal-

ancing the mesh in an adaptive environment. Thus, the MTA has a distinct advantage

over distributed-memory systems for this class of adaptive applications.

TABLE 5.9
Runtimes (in seconds) for the original and SAW orderings on the MTA.

ORIG SAW
P SPMV CG CG
1 0.378 9.86 9.74
2 0.189 5.02 5.01
4 0.095 2.53 2.64
8 0.051 1.35 1.36

For the MTA implementation of PCG, we developed a multithreaded version of

the lower and upper triangular solves (see Fig. 2.2). Matrix factorization times are not
reported since it is performed only once outside the inner loop. Our multithreaded

strategy uses low-level locks to effectively perform an on-the-fly dependency analysis.

Recall that to compute the lower triangular solve Lx = b, the solution of xi depends

on all xj, j < i, unless l_i = 0. First, synchronization locks are applied to all

xj, j = 1,2,...,n, to guarantee correct dependency behavior. Threads are then

dynamically assigned to solve for each xi. If a given xi has a dependency on xj
which has not yet been computed, the attempt to access the blocked memory address

of xj will cause the thread responsible for processing xi to be temporarily put to

sleep. Once a thread successfully solves for xj, the synchronization lock on that

variable is released, causing the runtime system to wake all blocked threads waiting

to access the memory address of xj. Subsequent attempts to access that variable will

no longer cause active threads to become blocked. The lightweight synchronization

of the MTA allows locks to be effectively used at such a fine granularity. Notice

that the multithreaded version of triangular solve is dramatically less complex than

the BlockSolve95 implementation described in §5.1, which required advanced graph

dependency analysis and matrix reordering to achieve high parallelism.

Table 5.10 presents the performance of PCG with the ORIG ordering on the
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TABLE5.10
Runtimes (in seconds) for the triangular solve and the overall PCG on the MTA.

ORIG
P TriSolve PCG
1 71.98 80.34
2 45.74 50.02
4 26.94 29.18
8 16.04 17.29

MTA, again using 60 streams. Observe that the triangular solve is responsible for

most of the computational overhead, and achieves a speedup of approximately 4.5X

on eight processors. This limited scalability is due to the lack of available thread level

parallelism in our dynamic dependency scheme. A large fraction of the computational

threads were blocked at any given time, preventing a full saturation of the MTA

processors. Subsequent attempts to optimize the multithreaded code by increasing

the number of streams and using more sophisticated orderings strategies caused the
machine to crash due to limitations in its current system software 4. We plan to revisit

the multithreaded PCG once a more mature runtime system becomes available on the

MTA. It would also be interesting to continue our experiments as more processors are

added to the system.

6. Summary and conclusions. In this paper, we examined the performance

of and the programming effort required for the Conjugate Gradient (CG) sparse iter-

ative solver on four leading parallel platforms using their corresponding programming

approaches: message passing, shared-memory directives, hybrid programming, and

multithreading.

Parallel programming with message passing is the most common and mature ap-

proach for high-performance systems. The MPI version of CG on the Cray T3E used

the Aztec [9] library. We compared the parallel performance after ordering the sparse
matrix using reverse Cuthill-McKee (RCM) [4], self-avoiding walk (SAW) [7], and

the METIS partitioner [12]. Results showed that all three schemes greatly improve

the parallel performance of CG compared to the naive natural ordering. In addition,

we demonstrated that traditional graph partitioners, which focus on minimizing edge

cuts, are not necessarily the best tools for distributing sparse matrices on multipro-

cessor systems. Using RCM or SAW as an ordering (and partitioning) strategy results
in a faster CG than METIS, due to better cache reuse. This shows that the cache

implications of ordering are more important that the communication implications of

partitioning. A performance model was also presented which predicts the expected

sparse matrix-vector multiply (SPMV) runtime as a function of both cache misses
and communication overhead. Within each CG iteration, the SPMV is usually the

most expensive operation.
For ill-conditioned linear systems, it is often necessary to use a preconditioning

technique. We presented MPI results for ILU(0) preconditioned CG (PCG) using the

BlockSolve95 [11] library. Unlike CG, the runtime of the PCG algorithm is domi-

nated by the triangular solves which are inherently less amenable to parallelization

than SPMV. BlockSolve95 graph colors and reorders the input matrix to achieve high

parallelism; however, we found that the initial ordering of the input matrix dramati-

4We were requested by the MTA system administrator at SDSC to postpone running our PCG
code until the system software error could be isolated and corrected.
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catlyaffectedPCG'sperformance.Overall,theSAWlinearizationresultedin thebest
runtimesfor all componentsofPCG,includinggraphcoloringandfactorization.

Usingashared-memorysystemcangreatlysimplifytheprogrammingtaskcom-
paredto messagepassing.A shared-memoryimplementationof CGontheSGIOri-
gin2000showedthatorderingalgorithmsdramaticallyimproveparallelperformance.
ThisisbecausetheOrigin2000isa distributed-memoryarchitecture,soproperdata
distributionisrequiredevenwhenprogrammingin shared-memorymode.A direct
comparisonwith anMPI implementationindicatedthat it is possibleto achieve
message-passingperformanceusingshared-memoryconstructsfor this classof ap-
plicationsthroughcarefuldataorderinganddistribution.

A recentlyproposedhybridprogrammingparadigmcombinestwolayersof paral-
lelism,by implementingOpenMPshared-memorycodeswithinanSMP,whileusing
MPI amongtheSMPclusters.WedevelopedtheCGalgorithmon theIBM SP,by
startingwith theAztec[9]MPIlibraryandincrementallyaddingOpenMPparalleliza-
tiondirectives.A newhybridstrategycomprisedofMETIS+SAWwaspresented,and
consistentlyoutperformedtheotherschemes.However,sincecachebehaviorissignif-
icantlymoreimportantthaninterprocessorcommunicationforourapplication,there
waslittle performancedifferencebetweentheMETIS+SAWstrategyandpureSAW
linearization.Comparinghybrid(MPI+OpenMP)versuspureMPI implementations
of CG,wefoundnegligibleperformancedifferencebetweenthetwoschemes.However,
sincethehybridparadigmincreasesprogrammingcomplexityandadverselyaffects
portability,weconcludethatforrunningiterativesolversonclustersof SMPs,apure
MPI implementationisamoreeffectivestrategy.

Multithreadinghasreceivedconsiderableattentionovertheyearsasapromising
wayto hidememorylatencyin high-performancecomputers,whileprovidingaccess
to a largeanduniformsharedmemory.Wepresentedresultsonthemultithreaded
architectureof theCrayMTA.TheCGimplementationwasstraightforward,requir-
ingonlycompilerdirectives.Resultsshowedthatspecialorderingand/orpartitioning
schemesarenot requiredontheMTAto obtainhighefficiencyandscalability.Fur-
thermore,reorderingandremappingarenot requiredevenif theunderlyingmesh
undergoesadaptation,givingtheMTAadistinctadvantageoverdistributed-memory
systemsforadaptiveapplications.However,portabilityislostastheMTAiscurrently
the0nlyarchitecturethatdirectlysupportsthisprogrammingparadigm.

Finally,amultithreadedversionofthePCGalgorithmwasalsodeveloped.Here,
thetriangularsolveuseslow-levellocksto performa graphdependencyanalysisat
runtime. This implementationwasdramaticallylesscomplexthanBlockSolve95's
PCG,whichrequiredadvancedgraphdependencyanalysisandmatrix reordering.
However,onlylimitedscalabilitywasachieveddueto thelackofa_ilablethreadlevel
parallelismin ourdynamicdependencyscheme,whichpreventedafull saturationof
theMTAprocessors.

In conclusion,thispaperexaminedtheintricaterelationshipsamongorderingand
partitioningschemes,parallelprogrammingparadigms,andmultiprocessorarchitec-
tures,for a classof sparsematrixcomputations.Weexpectthat themethodologies
andlessonsderivedfromthisresearchwill beapplicabletootherapplicationdomains
characterizedbyirregulardataaccess.
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